The method for study of vertical gas-liquid flow with foaming agent
https://doi.org/10.31660/0445-0108-2021-6-76-89
Abstract
The issue of operation water-cut and "self-kills" wells is one of major aspects in gas production. One of the methods of solving this problem is the introduction of foaming agent into the well. The effectiveness of these technologies requires a theoretical and experimental study of gas-liquid flow with surfactants. We have analyzed existing works and have found out that experimental research in this area was carried out at atmospheric pressure. At the same time, the pressure in the well varies with the length of the wellbore and can affect the properties of foaming agent. The article presents a description of a facility for the study of gas-liquid flows with foaming agents at different pressure values. A method of conducting experiments on the facility, simulating a section of the production tubing of a vertical gas well, has been developed. The relations allowing calculating the volume contents of the phases in the gas-liquid flow with surfactants are proposed.
About the Authors
V. A. OgaiRussian Federation
Vladislav А. Ogai, Assistant at the Department of Development and Exploitation of Oil and Gas Fields
Tyumen
N. G. Musakaev
Russian Federation
Nail G. Musakaev, Doctor of Physics and Mathematics, Associate Professor, Chief Researcher, Tyumen Branch of Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Professor at the Department of Development and Exploitation of Oil and Gas Fields, Industrial University of Tyumen
Tyumen
A. Yu. Yushkov
Russian Federation
Anton Yu. Yushkov, Candidate of Engineering, Associate Professor at the Department of Development and Exploitation of Oil and Gas Fields
Tyumen
V. O. Dovbysh
Russian Federation
Vadim O. Dovbysh, Project Manager Training of Graduate School of engineering EG
Tyumen
M. A. Vasilev
Russian Federation
Mark А. Vasilev, Postgraduate
Tyumen
References
1. Izyumchenko, D. V., Mandrik, E. V., Melnikov, S. A., Ploskov, A. A., Moiseуev, V. V., Kharitonov, A. N., & Pamuzhak, S. G. (2018). Operation of gas wells in conditions of active water and sand manifestation. Vesti gazovoy nauki, (1(33)), рр. 235-241. (In Russian).
2. Panikarovskii, V. V., & Panikarovskii, E. V. (2017). Exploitation of gas wells in late stage of development of gas fields. Oil and Gas Studies, (5), рр. 85-89. (In Russian). DOI: 10.31660/0445-0108-2017-5-85-89
3. Alzhanov, Y., Karami, H., Pereyra, E., & Gamboa, J. (2018). Efficacy of Surfactants in Rich Gas Shale Wells. SPE Artificial Lift Conference and Exhibition - Americas. The Woodlands, Texas, USA, 2018. (In English). Available at: https://doi.org/10.2118/190941-MS
4. Gcali, C., Karami, H., Pereyra, E., & Sarica, C. (2018). Surfactant Batch Treatment Efficiency as an Artificial Lift Method for Horizontal Gas Wells. SPE Artificial Lift Conference and Exhibition - Americas. The Woodlands, Texas, USA, 2018. (In English). Available at: https://doi.org/10.2118/190919-MS
5. Omrani, P. S., Shukla, R. K., Vercauteren, F., & Nennie, E. (2016). Towards a Better Selection of Foamers for the Deliquification of Mature Gas Wells. International Petroleum Technology Conference. - Bangkok, Thailand, November 2016. (In English). Available at: https://doi.org/10.2523/IPTC-18806-MS
6. Liu, T., Zhou, X., Chen, H., Lu, G., Zhao, Zh., Liu, D., & Du, Y. (2019). Popularization and application of the capillary foam deliquification technology in horizontal wells with low pressures and low liquid flow rates: a case study on middle shallow gas reservoirs in the Western Sichuan depression. Natural Gas Industry B, (6), pp. 25-33. (In English). DOI 10.1016/j.ngib.2019.01.004
7. Ogai, V. A., Saburova, E. A., Dovbysh, V. O., & Yushkov, A. Yu. (2020). Calculation of the pressure gradient in the Cenomanian gas well operated with a foaming agent. Oil and Gas Studies, (4), pp. 36-50. (In Russian). DOI: 10.31660/0445-0108-2020-4-36-50
8. Skopich, A. (2012). Experimental Study of Surfactant Effect on Liquid Loading in 2‐in and 4‐in Diameter Vertical Pipes. University of Tulsa, Tulsa, OK, (In English). Available at: https://www.worldcat.org/title/experimental-study-of-surfactant-effect-on-liquid-loading-in-2-in-and-4-in-diameter-vertical-pipes/oclc/820963457
9. Korotaev, Yu. P. (1996). Laboratornye issledovaniya raboty gazovykh skvazhin s zhidkost'yu na zaboe. Izbrannye trudy v 3 tomakh. Tom 1. Moscow, Nedra Рubl., pp. 263-281. (In Russian).
10. Kashinsky, O. N., Lobanov, P. D., Pakhomov, M. A., Randin, V. V., & Terekhov, V. I. (2006). Experimental and numerical study of downward bubbly flow in a pipe. International Journal of Heat and Mass Transfer, 49(19-20), pp. 3717-3727. (In English). DOI: 10.1016/j.ijheat masstransfer.2006.02.004
11. Bhagwat, S. M., & Ghajar, A. J. (2016). Experimental investigation of non-boiling gas-liquid two phase flow in downward inclined pipes. Experimental Thermal and Fluid Science, (89), pp. 301-318. (In English). DOI: 10.1016/j.expthermflusci.2016.08.004
12. Ansari, A. M., Sylvester, N. D., Sarica, C., Shoham, O., & Brill, J. P. (1994). A Comprehensive Mechanistic Model for Upward Two-Phase Flow in Wellbores. PA SPE Production and Facilities (May), 9(02), pp. 143-151. (In English). DOI: 10.2118/20630
13. Gray, W. G. (1975). A derivation of the equations for multiphase transport. Chemical Engineering Science, 30(2), pp. 229-233. (In English). DOI: 10.1016/0009-2509(75)80010-8
14. Shulepin, S. A. (2017). Eksperimental'noe obosnovanie ustoychivykh rezhimov ekspluatatsii obvodnyayushchikhsya gazovykh skvazhin. Diss. … kand. tekhn. nauk. Moscow, 163 p. (In Russian).
15. Duns, H. Jr., & Ros, N. C. J. (1963). Vertical flow of gas and liquid mixtures in wells. The 6 th World Petroleum Congress. Frankfurt am Main, Germany, June, 1963, pp. 451-465. (In English). Available at: https://onepetro.org/WPCONGRESS/proceedings-abstract/WPC06/AllWPC06/WPC-10132/198621
16. Gritsenko, A. I., Vyazenkin, G. N., Buzinov, S. N., Akhmedov, B. G., & Kazakov, B. O. (1983). Eksperimental'noe issledovanie istinnogo vodosoderzhaniya v vertikal'nykh trubakh pri dvizhenii po nim gazovodyanykh smesei pri malykh raskhodakh gaza. Problemy podzemnogo khraneniya gaza v SSSR: sbornik nauchnykh trudov. Moscow, VNIIGAZ Publ., pp. 86-96.
17. Mamaev, V. A., Odishariya, G. E., Semenov, N. I., & Tochigin, A. A. (1978). Dvizhenie gazozhidkostnykh smesey v trubakh. Moscow, Nedra Publ., 270 p. (In Russian).
18. Odishariya, G. E., Tolasov, Yu. A., & Klapchuk, O. V. (1974). Oblast' sushchestvovaniya i istinnoe gazosoderzhanie pri voskhodyashchem kol'tsevom rezhime techeniya v trubakh. Razrabotka gazovykh mestorozhdeniy, transport gaza. Moscow, VNIIGAZ Publ., Vyp. 3, pp. 128-138. (In Russian).
19. Ogai, V. A., Khabibullin, A. F., & Yushkov, A. Yu. Experimental installation for imitation of gas-liquid mixture and dynamic processes in the stock of the gas well. Pat. RF 2654889, MPK E21B 47/00 G01M 99/00. Applied: 22.05.17. Published: 23.05.18. 23 р. (In Russian).
20. Liu, L., Li, X., Tong, L. & Liu, Y. (2014). Effect of Surfactant Additive on Vertical Two Phase Flow. Journal of Petroleum Science and Engineering, (115), pp. 1-10. (In English). DOI: 10.1016/j.petrol.2014.02.004
21. Zhou, J. (2013). Flow Patterns in Vertical Air. Water Flow with and without Surfactant. University of Dayton, Dayton, Ohio, USA, 2013. (In English). Available at: http://rave.ohiolink.edu/etdc/view?acc_num=dayton1375455656
22. Christiansen, R. L. (2006). A New Look at Foam for Unloading Gas Wells. U.S.A., 2006. (In English). Available at: https://www.researchgate.net/profile/Richard-Christiansen-2/publication/237524222_A_New_Look_at_Foam_for_Unloading_Gas_Wells/links/551aafa70cf2bb754076ca3d/A-New-Look-at-Foam-for-Unloading-Gas-Wells.pdf
23. Saleh, S., & Al-Jamae'y, M. (1997). Foam-Assisted Liquid Lifting in Low Pressure Gas Wells. SPE Production Operations Symposium, Oklahoma City, Oklahoma, March, 9-11, 1997. (In English). Available at: https://doi.org/10.2118/37425-MS
24. Kelkar, M., & Sarica, C. (2015). Gas Well Pressure Drop Prediction under Foam Flow Conditions. RPSEA, 192 p. (In English).
25. van't Westende, J., de Boer, J., & Vercauteren, F. (2015). JIP Experimental foam selection - Modelling of foam pipe flow Date. TNO report TNO 2015 R11538. 81 p. (In English). Available at: https://projecten.topsectorenergie.nl/storage/app/uploads/public/5bb/36b/7d1/5bb36b7d189b5755670309.pdf
26. Van Nimwegen, A. T. (2015). The effect of surfactants on gas-liquid pipe flows. Delft University of Technology. (In English). Available at: https://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid%3A5728dde5-e722-46e8-a92f-b62937ecf538
27. van't Westende, J. M. C., Henkes, R. A. W. M., Ajani, A., Kelkar, M. (2017). The use of surfactants for gas well deliquification: a comparison of research projects and developed models. 18 th International Conference on Multiphase Production Technology, Cannes, France, June 2017. (In English). Available at: https://onepetro.org/BHRICMPT/proceedings-abstract/BHR17/All-BHR17/BHR-2017-161/369
28. Joshi, Sh. (2015). Foamer evaluation by the sparging test method for application to gas well deliquification. Delft University of Technology. (In English). Available at: https://repository.tudelft.nl/islandora/object/uuid:fe36e0e7-6219-4633-8bd3-b467704dc83a
Review
For citations:
Ogai V.A., Musakaev N.G., Yushkov A.Yu., Dovbysh V.O., Vasilev M.A. The method for study of vertical gas-liquid flow with foaming agent. Oil and Gas Studies. 2021;(6):76-89. (In Russ.) https://doi.org/10.31660/0445-0108-2021-6-76-89