Preview

Oil and Gas Studies

Advanced search

An investigation of methods for calculating the volume of methane dissolved in reservoir water

https://doi.org/10.31660/0445-0108-2021-6-103-111

Abstract

Existing gas production technologies limit gas recovery at the level of 85 %. Therefore, it is important to introduce technologies that make it possible to maximize the volume of production and intensify the inflow; for their selection it is important to have a reliable estimate of the residual gas reserves, since with a significant volume of the aquifer of gas fields, the volume of dissolved gas can be up to 10 % of the total reserves of the reservoir, which should be taken into account when designing the application of technologies to increase gas recovery.

The main hydrocarbon dissolving in reservoir water is methane. In this regard, it is of interest to study methods that make it possible to determine the volume of hydrocarbon gases dissolved in saline water, which will make it possible to determine the total reserves of such gas. We investigated the existing methods for calculating the amount of methane dissolved in reservoir water, and gave a quantitative assessment of the volume of gas dissolved in water.

About the Authors

O. V. Fominykh
Industrial University of Tyumen
Russian Federation

Oleg V. Fominykh, Doctor of Engineering, Professor at the Department of Development and Exploitation of Oil and Gas Fields

Tyumen



S. A. Leontiev
Industrial University of Tyumen
Russian Federation

Sergey A. Leontiev, Doctor of Engineering, Professor at the Department of Development and Exploitation of Oil and Gas Fields

Tyumen



References

1. Vaganov, Yu. V., Yagafarov, A. K., Parfiriev, V. A., & Mansurova, M. M. (2019). Revisiting the increasing productivity of gas wells, that penetrate an undersaturated part of the Cenomanian productive complex. Scientific journal of Russian gas society, 2(21), pp. 5-10. (In Russian).

2. Kolmakov, A. V., Krotov, P. S. & Kononov, A. V. (2012). Tekhnologii razrabotki senomanskikh zalezhey nizkonapornogo gaza. St. Petersburg, Nedra Publ., 175 p. (In Russian).

3. Moroz, V. N., Krasnyashchikh, O. S., Mulyukov, A. M., Leontiev, S. A., Fominykh, O. V., & Strelnikov, D. A. (2021). Substantiation of methods of investigation of deep samples of oil from deposits with gas cap by example of Pyakyakhinsky deposit. Oilfield Engineering, (8(632)), pp. 16-21. (In Russian).

4. Bortnikov, A. E., Kordiak, K. E., Moroz, V. N., Leontev, S. A., & Valeev, M. D. (2015). Results of laboratory modeling of formation fluid interaction with the injected water in conditions simulating liquid intensive discharge out of a formation. Geology, geophysics and development of oil and gas fields, (2), pp. 66-69. (In Russian).

5. Gultyaeva, N. A. & Toshev, E. N. (2013). Mass exchange in the oil-gas-water and its effect on the production of associated gas. Oil Industry, (10), pp. 100-103. (In Russian).

6. Gultyaeva, N. A. & Krikunov, V. V. (2012). The influence of the amount of gas dissolved in reservoir water on the distribution of the volumes of the components of the extracted production of wells. Oil Industry, (8), pp. 40-43. (In Russian).

7. Amerkhanov, I. M., Reym, G. A., Grebneva, S. T., & Kataeva, M. R. (1976). Vliyanie zakachivaemoy vody na parametry plastovoy nefti. Neftepromyslovoe delo, (6), pp. 16-18. (In Russian).

8. Namiot, A. Yu. (1976). Fazovye ravnovesiya v dobyche nefti. Moscow, Nedra Publ., 183 p. (In Russian).

9. Shilov, Yu. S. (1995). Resursy vodorastvorennykh gazov Rossii. Moscow, Nedra Publ., 48 p. (In Russian).

10. Larin, V. I., & Filippov, V. P. (1997). Geologiya nefti i gaza. Moscow, GANG Publ., 176 p. (In Russian).

11. Devyatkova, Y. S. & Fominykh, O. V. (2012). Metodika rascheta zapasov gaza, rastvorennogo v vodonosnom basseyne. Nauka i TEK, (5), рр. 21-22. (In Russian).

12. Fominykh, O. V. (2011). Issledovanie fazovykh ravnovesiy uglevodorodov i razrabotka metoda ikh rascheta dlya resheniya zadach ekspluatatsii neftyanykh mestorozhdeniy. Tyumen, 107 p. (In Russian).

13. Dodson, C. R., & Standing, M. B. (1944). Pressure-Volume-Temperature and Solubility Relations for Natural-Gas-Water Mixtures. Drilling and Products Practice. (In English). Available at: https://onepetro.org/APIDPP/proceedings-abstract/API44/All-API44/API-44-173/52141

14. Jones, P. J. (1946). Petroleum Production. New York, Reinhold Publishing Corp., Vol. 1, p. 37. (In English).

15. Gultyaeva, N. A. (2015). Issledovanie prichin postupleniya gaza v dobyvayushchie neftyanye skvazhiny i razrabotki metodov identifikatsii ego istochnikov. Diss. … kand. tekhn. nauk. Tyumen, 124 р. (In Russian).

16. Kordik, K. E. (2019). Issledovanie zakonomernostey izmeneniya gazovogo faktora pri ekspluatatsii neftyanykh mestorozhdeniy Zapadnoy Sibiri. Ufa, 191 p. (In Russian).

17. Shejkh-Ali, D. M., Yulbarisov, E. M., & Valeev, M. D. (2006). Method for remaining gas resources estimation while developing oil fields. Oil Industry, (11), рр. 32-33. (In Russian).

18. Kordik K. E., Shkandratov, V. V., Bortnikov, A. E., & Leontyev, S. A. (2016). About trends in the oil-gas ratio change in the process of exploitation of Lukoil - West Siberia LLC fields. Oil Industry, (8), pp. 54-57. (In Russian).

19. Kolmakov, A. V. (2012). Issledovanie i razrabotka tekhnologii vyrabotki ostatochnykh zapasov nizkonapornogo gaza senomanskikh zalezhey. Diss. … kand. tekhn. nauk. Tyumen, 170 p. (In Russian).


Review

For citations:


Fominykh O.V., Leontiev S.A. An investigation of methods for calculating the volume of methane dissolved in reservoir water. Oil and Gas Studies. 2021;(6):103-111. (In Russ.) https://doi.org/10.31660/0445-0108-2021-6-103-111

Views: 292


ISSN 0445-0108 (Print)