Preview

Известия высших учебных заведений. Нефть и газ

Расширенный поиск

ПРИМЕНЕНИЕ ПЕРЕМЕННОЙ ПРОВОДИМОСТИ ПОВРЕЖДЕННОЙ ТРЕЩИНЫ И ОПТИМИЗАЦИЯ

https://doi.org/10.31660/0445-0108-2018-1-68-74

Аннотация

В работе представлены результаты изменения или неравномерности проводимости (ширины, проницаемости или обоих профилей) в трещине. Это позволяет использовать этот метод для прогнозирования продуктивности и не только. Использование средней проводимости трещин для представления эквивалентного постоянного значения показало, что это хорошо работает для высокой проводимости, уменьшает проводимость эллипсоидальных или клиновидных трещин с максимальной проводимостью ствола скважины. Для перевернутых клиновых трещин (проводимость в скважине меньше среднего) эффективность трещины будет значительно снижена, а средняя проводимость значительно переоценит эффективное значение. Кроме того, для низкопроводимых трещин в скважине эквивалентная проводимость взвешивается больше в сторону максимальной проводимости скважины, чем к среднему значению. Также представлена оптимальная проводимость трещин (и их размеров) для заданного количества проппанта с целью максимизировать производительность.

Об авторах

С. А. Фаик
Тюменский индустриальный университет; Университет технологии
Россия


А. В. Саранча
Тюменский индустриальный университет
Россия


Список литературы

1. Ramey H. J., Cobb W. M. A General Pressure Buildup Theory for a Well in a Close Drainage Area // JPT. - (December, 1971). - P. 1493-1505

2. Influence of Fracture Heterogeneity and Wing Length on the Response of Vertically Fractured Wells / C. O. Bennett [et al.] // SPEJ. - (April, 1983). - P. 219-230

3. Riley M. F., Brigham W. E., Horne R. N. Analytical Solutions for Elliptical Finite-Conductivity Fractures // SPE 22656. - (October, 1991)

4. Cinco-Ley H., Samaniego-V F. Transient Pressure Analysis: Finite Conductivity Fracture Case versus Damaged Fracture Case // SPE 10179. - (October, 1981)

5. Economides M., Oligney R., Valko P. Unified Fracture Design. - Texas, Alvin: Orsa Press, 2002

6. McGuire W. J., Sikora V. J. The Effect of Vertical Fractures on Well Productivity // SPEJ. - 1960. - Vol. 219. - P. 401-403

7. Recent Advances in Hydraulic Fracturing: monograph / J. L. Gidley [et al.] // SPE. - 1989. - Vol. 12. - P. 318

8. Prats M. Effect of Vertical Fractures on Reservoir Behavior - Incompressible Fluid Case // SPEJ. - (June, 1961). - P. 105-118

9. Prats M., Hazebroek P., Strickler W. R. Effect of Vertical Fractures on Reservoir Behavior - Compressible Fluid case // SPEJ. - (June, 1962). - P. 87-94.

10. Gringarten A. C., Ramey H. J., Raghavan R. Unsteady-State Pressure Distributions Created by a Well with a Single Infinite-Conductivity Fracture // SPEJ. - (August, 1974). - P. 347-360

11. Gringarten A. C. Reservoir Limit Testing for Fractured Wells // SPE 7452. - (October 1978)

12. Cinco-Ley H. Evaluation of Hydraulic Fracturing by Transient Pressure Analysis Methods // SPE 10043. - (March, 1982)

13. Cinco-Ley H., Samaniego-V F., Dominguez A. N. Transient Pressure Behavior for a Well with a Finite-Conductivity Vertical Fracture // SPEJ. - (August, 1978)

14. Behavior of Wells with Low-Conductivity Vertical Fractures / H. Cinco-Ley [et al.] // SPE 16776. - (September, 1987)

15. Barker B. J., Ramey Jr. Transient Flow to Finite Conductivity Vertical Fractures // SPE 7489. - (October, 1978)

16. Valko P. P. Economides M. Heavy Crude Production from Shallow Formations: Long Horizontal Wells Versus Horizontal Fractures // SPE 50421. - (November, 1998)

17. Scott J. O. The Effect of Vertical Fractures on Transient Pressure Behavior of Wells // JPT. - (December, 1963). - P. 1365-1369

18. Russel D. G., Truitt N. E. Transient Pressure Behavior in Vertically Fractured Reservoirs // JPT. - (October, 1964). - P. 1159-1170

19. Raymond L. R., Binder G. G. Productivity of Wells in Vertically Fractured, Damaged Formations // JPT. - (January, 1967). - P. 120-130

20. Vertical Fracture Height - Its Effect on Steady-State Production Increase / J. M. Tinsley [et al.] // JPT. - (May, 1969). - P. 633-638

21. Earlougher R. C., Ramey Jr. Interference Analysis in Bounded Systems // JCPT. - (October - December, 1973). - P. 33-45

22. Earlougher R. C. Advances in Well Test Analysis: monograph // SPE. - 1977. - Vol. 5

23. Raghavan R., Hadinoto N. Analysis of Pressure Data for Fractured Wells: The Constant-Pressure Outer Boundary // SPEJ. - (April, 1978). - P. 139-149

24. Lee S. T., Brockenbrough J. R. A New Analytical Solution for Finite Conductivity Vertical Fractures with Real Time and Laplace Space Parameter Estimation // SPE 12013. - 1983

25. Raghavan R. Pressure Behavior of Wells Intercepting Fractures // Proceedings, Invitational Well-Testing Symposium. - (October 19-21, 1977). - P. 117-160

26. Azari M., Knight L. E., Soliman M. Y. Low-Conductivity and Short Fracture Half-Length Type Curves and Analysis for Hydraulically Fractured Wells Exhibiting Near Radial Flow Profile // SPE 23630. - (March, 1992)

27. Economides M., Nolte K.G. Reservoir Stimulation, Schlumberger Educational Services, Texas, Houston, 1987

28. Bird R. B., Stewart W. E., Lightfoot E. N. Transport Phenomena. - New York, Wiley, 1960. - P. 5


Рецензия

Для цитирования:


Фаик С.А., Саранча А.В. ПРИМЕНЕНИЕ ПЕРЕМЕННОЙ ПРОВОДИМОСТИ ПОВРЕЖДЕННОЙ ТРЕЩИНЫ И ОПТИМИЗАЦИЯ. Известия высших учебных заведений. Нефть и газ. 2018;(1):68-74. https://doi.org/10.31660/0445-0108-2018-1-68-74

For citation:


Faiq S.A., Sarancha A.V. PERFORMANCE OF THE VARIABLE CONDUCTIVITY DAMAGED FRACTURE AND FRACTURE OPTIMIZATION. Oil and Gas Studies. 2018;(1):68-74. (In Russ.) https://doi.org/10.31660/0445-0108-2018-1-68-74

Просмотров: 680


ISSN 0445-0108 (Print)